Skip to main content
You can update a single record using the record ID or multiple records using a metadata filter.
  • When updating by ID, you change the vector and/or metadata of a single record.
  • When updating by metadata, you change metadata across multiple records using a metadata filter.
To update entire records, use the upsert operation instead.

Update by ID

To update the vector and/or metadata of a single record, use the update operation with the following parameters:
  • namespace: The namespace containing the record to update. To use the default namespace, set the namespace to "__default__".
  • id: The ID of the record to update.
  • One or both of the following:
    • Updated values for the vector. Specify one of the following:
      • values: For dense vectors. Must have the same length as the existing vector.
      • sparse_values: For sparse vectors.
    • setMetadata: The metadata to add or change. When updating metadata, only the specified metadata fields are modified, and if a specified metadata field does not exist, it is added.
If a non-existent record ID is specified, no records are affected and a 200 OK status is returned.
In this example, assume you are updating the dense vector values and one metadata value of the following record in the example-namespace namespace:
(
    namespace="example-namespace",
    id="id-3", 
    values=[4.0, 2.0], 
    setMetadata={"type": "doc", "genre": "drama"}
)
from pinecone.grpc import PineconeGRPC as Pinecone

pc = Pinecone(api_key="YOUR_API_KEY")

# To get the unique host for an index, 
# see https://docs.pinecone.io/guides/manage-data/target-an-index
index = pc.Index(host="INDEX_HOST")

index.update(
	namespace="example-namespace",
	id="id-3", 
	values=[5.0, 3.0], 
	set_metadata={"genre": "comedy"}
)
After the update, the dense vector values and the genre metadata value are changed, but the type metadata value is unchanged:
(
    id="id-3", 
    values=[5.0, 3.0], 
    metadata={"type": "doc", "genre": "comedy"}
)

Update by metadata

This feature is in public preview and is available only on the 2025-10 version of the API. See limitations for details.
To add or change metadata across multiple records in a namespace, use the update operation with the following parameters:
  • namespace: The namespace containing the records to update. To use the default namespace, set this to "__default__".
  • filter: A metadata filter expression to match the records to update.
  • setMetadata: The metadata to add or change. When updating metadata, only the specified metadata fields are modified. If a specified metadata field does not exist, it is added.
  • dry_run: Optional. If true, the number of records that match the filter expression is returned, but the records are not updated.
    Each request updates a maximum of 100,000 records. Use "dry_run": true to check if you need to run the request multiple times. See the example below for details.
For example, let’s say you have records that represent chunks of a single document with metadata that keeps track of chunk and document details, and you want to store the author’s name with each chunk of the document:
{
    "id": "document1#chunk1", 
    "values": [0.0236663818359375, -0.032989501953125, ..., -0.01041412353515625, 0.0086669921875], 
    "metadata": {
        "document_id": "document1",
        "document_title": "Introduction to Vector Databases",
        "chunk_number": 1,
        "chunk_text": "First chunk of the document content...",
        "document_url": "https://example.com/docs/document1"
    }
},
{
    "id": "document1#chunk2", 
    "values": [-0.0412445068359375, 0.028839111328125, ..., 0.01953125, -0.0174560546875],
    "metadata": {
        "document_id": "document1",
        "document_title": "Introduction to Vector Databases", 
        "chunk_number": 2,
        "chunk_text": "Second chunk of the document content...",
        "document_url": "https://example.com/docs/document1"
    }
},
...
  1. To check how many records match the filter expression, send a request with "dry_run": true:
    curl
    # To get the unique host for an index,
    # see https://docs.pinecone.io/guides/manage-data/target-an-index
    PINECONE_API_KEY="YOUR_API_KEY"
    INDEX_HOST="INDEX_HOST"
    
    curl "https://$INDEX_HOST/vectors/update" \
        -H "Api-Key: $PINECONE_API_KEY" \
        -H 'Content-Type: application/json' \
        -H "X-Pinecone-API-Version: 2025-10" \
        -d '{
                "dry_run": true,
                "namespace": "example-namespace",
                "filter": {
                    "document_title": {"$eq": "Introduction to Vector Databases"}
                },
                "setMetadata": {
                    "author": "Del Klein"
                } 
            }'
    
    The response contains the number of records that match the filter expression:
    {
        "matchedVectors": 150000
    }
    
    Since this number exceeds the 100,000 record limit, you’ll need to run the update request multiple times.
  2. Initiate the first update by sending the request without the dry_run parameter:
    curl
    curl "https://$INDEX_HOST/vectors/update" \
        -H "Api-Key: $PINECONE_API_KEY" \
        -H 'Content-Type: application/json' \
        -H "X-Pinecone-API-Version: 2025-10" \
        -d '{
                "namespace": "example-namespace",
                "filter": {
                    "document_title": {"$eq": "Introduction to Vector Databases"}
                },
                "setMetadata": {
                    "author": "Del Klein"
                } 
            }'
    
    Again, the response contains the total number of records that match the filter expression, but only 100,000 will be updated:
    {
        "matchedVectors": 150000
    }
    
  3. Pinecone is eventually consistent, so there can be a slight delay before your update request is processed. Repeat the dry_run request until the number of matching records shows that the first 100,000 records have been updated:
    curl
    # To get the unique host for an index,
    # see https://docs.pinecone.io/guides/manage-data/target-an-index
    PINECONE_API_KEY="YOUR_API_KEY"
    INDEX_HOST="INDEX_HOST"
    
    curl "https://$INDEX_HOST/vectors/update" \
        -H "Api-Key: $PINECONE_API_KEY" \
        -H 'Content-Type: application/json' \
        -H "X-Pinecone-API-Version: 2025-10" \
        -d '{
                "dry_run": true,
                "namespace": "example-namespace",
                "filter": {
                    "document_title": {"$eq": "Introduction to Vector Databases"}
                },
                "setMetadata": {
                    "author": "Del Klein"
                } 
            }'
    
    {
        "matchedVectors": 50000
    }
    
  4. Once the first 100,000 records have been updated, update the remaining records:
    curl
    curl "https://$INDEX_HOST/vectors/update" \
        -H "Api-Key: $PINECONE_API_KEY" \
        -H 'Content-Type: application/json' \
        -H "X-Pinecone-API-Version: 2025-10" \
        -d '{
                "namespace": "example-namespace",
                "filter": {
                    "document_title": {"$eq": "Introduction to Vector Databases"}
                },
                "setMetadata": {
                    "author": "Del Klein"
                } 
            }'
    
  5. Repeat the dry_run request until the number of matching records shows that the remaining records have been updated:
    curl
    # To get the unique host for an index,
    # see https://docs.pinecone.io/guides/manage-data/target-an-index
    PINECONE_API_KEY="YOUR_API_KEY"
    INDEX_HOST="INDEX_HOST"
    
    curl "https://$INDEX_HOST/vectors/update" \
        -H "Api-Key: $PINECONE_API_KEY" \
        -H 'Content-Type: application/json' \
        -H "X-Pinecone-API-Version: 2025-10" \
        -d '{
                "dry_run": true,
                "namespace": "example-namespace",
                "filter": {
                    "document_title": {"$eq": "Introduction to Vector Databases"}
                },
                "setMetadata": {
                    "author": "Del Klein"
                } 
            }'
    
    {
        "matchedVectors": 0
    }
    
    Once the request has completed, all matching records include the author name as metadata:
    {
        "id": "document1#chunk1", 
        "values": [0.0236663818359375, -0.032989501953125, ..., -0.01041412353515625, 0.0086669921875], 
        "metadata": {
            "document_id": "document1",
            "document_title": "Introduction to Vector Databases",
            "chunk_number": 1,
            "chunk_text": "First chunk of the document content...",
            "document_url": "https://example.com/docs/document1",
            "author": "Del Klein"
        }
    },
    {
        "id": "document1#chunk2", 
        "values": [-0.0412445068359375, 0.028839111328125, ..., 0.01953125, -0.0174560546875],
        "metadata": {
            "document_id": "document1",
            "document_title": "Introduction to Vector Databases", 
            "chunk_number": 2,
            "chunk_text": "Second chunk of the document content...",
            "document_url": "https://example.com/docs/document1",
            "author": "Del Klein"
        }
    },
    ...
    

Limitations

  • This feature is available only on the 2025-10 version of the API.
  • Each request updates a maximum of 100,000 records. Use "dry_run": true to check if you need to run the request multiple times. See the example above for details.
  • You can add or change metadata across multiple records, but you cannot remove metadata fields.

Data freshness

Pinecone is eventually consistent, so there can be a slight delay before updates are visible to queries. You can use log sequence numbers to check whether an update request has completed.